If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2-44t+5
We move all terms to the left:
0-(-16t^2-44t+5)=0
We add all the numbers together, and all the variables
-(-16t^2-44t+5)=0
We get rid of parentheses
16t^2+44t-5=0
a = 16; b = 44; c = -5;
Δ = b2-4ac
Δ = 442-4·16·(-5)
Δ = 2256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2256}=\sqrt{16*141}=\sqrt{16}*\sqrt{141}=4\sqrt{141}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(44)-4\sqrt{141}}{2*16}=\frac{-44-4\sqrt{141}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(44)+4\sqrt{141}}{2*16}=\frac{-44+4\sqrt{141}}{32} $
| 4z+21=7z | | (18-2x)(12-2x)=0 | | 6x+6-3x=39 | | 2x=-12+23x | | 0.5x–1=1-0.5x | | 11=-109-3x | | 0.5x–1=1–0.5x | | 15=-16t^2-44t+5 | | 35=11-8x | | 8y=7,5y | | 40-5x=140 | | x-9/10x=15 | | 3/4x+2=1/4X-9 | | x+20+50+90=180 | | 8(x-2)=32(x-3) | | X2+y2=16 | | 64(3x-2)=16 | | 15b+3=63 | | 6(x+3-10=32 | | 4w+3/2=17 | | w+24=33 | | 4c+12=7c+11.58 | | 6y-4=25 | | 2(2x+1)=32 | | 1.7×n+3.8=7.71 | | 2(2x-1)=32 | | -7(x=8)=-7 | | X+.06x=8 | | 2x^2+20=100 | | 1.5x=1.1x+100 | | d=7+9 | | 2z+9=29 |